Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound
نویسندگان
چکیده
BACKGROUND Volumetric thermometry with fine spatiotemporal resolution is desirable to monitor MR-guided focused ultrasound (MRgFUS) procedures in the brain, but requires some form of accelerated imaging. Accelerated MR temperature imaging methods have been developed that undersample k-space and leverage signal correlations over time to suppress the resulting undersampling artifacts. However, in transcranial MRgFUS treatments, the water bath surrounding the skull creates signal variations that do not follow those correlations, leading to temperature errors in the brain due to signal aliasing. METHODS To eliminate temperature errors due to the water bath, a spatially-segmented iterative reconstruction method was developed. The method fits a k-space hybrid signal model to reconstruct temperature changes in the brain, and a conventional MR signal model in the water bath. It was evaluated using single-channel 2DFT Cartesian, golden angle radial, and spiral data from gel phantom heating, and in vivo 8-channel 2DFT data from a FUS thalamotomy. Water bath signal intensity in phantom heating images was scaled between 0-100% to investigate its effect on temperature error. Temperature reconstructions of retrospectively undersampled data were performed using the spatially-segmented method, and compared to conventional whole-image k-space hybrid (phantom) and SENSE (in vivo) reconstructions. RESULTS At 100% water bath signal intensity, 3 ×-undersampled spatially-segmented temperature reconstruction error was nearly 5-fold lower than the whole-image k-space hybrid method. Temperature root-mean square error in the hot spot was reduced on average by 27 × (2DFT), 5 × (radial), and 12 × (spiral) using the proposed method. It reduced in vivo error 2 × in the brain for all acceleration factors, and between 2 × and 3 × in the temperature hot spot for 2-4 × undersampling compared to SENSE. CONCLUSIONS Separate reconstruction of brain and water bath signals enables accelerated MR temperature imaging during MRgFUS procedures with low errors due to undersampling using Cartesian and non-Cartesian trajectories. The spatially-segmented method benefits from multiple coils, and reconstructs temperature with lower error compared to measurements from SENSE-reconstructed images. The acceleration can be applied to increase volumetric coverage and spatiotemporal resolution.
منابع مشابه
Toward real-time availability of 3D temperature maps created with temporally constrained reconstruction.
PURPOSE To extend the previously developed temporally constrained reconstruction (TCR) algorithm to allow for real-time availability of three-dimensional (3D) temperature maps capable of monitoring MR-guided high intensity focused ultrasound applications. METHODS A real-time TCR (RT-TCR) algorithm is developed that only uses current and previously acquired undersampled k-space data from a 3D ...
متن کاملAccelerated MRI thermometry by direct estimation of temperature from undersampled k-space data.
PURPOSE Acceleration of magnetic resonance (MR) thermometry is desirable for several applications of MR-guided focused ultrasound, such as those requiring greater volume coverage, higher spatial resolution, or higher frame rates. METHODS We propose and validate a constrained reconstruction method that estimates focal temperature changes directly from k-space without spatial or temporal regula...
متن کاملPET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors
Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...
متن کاملOptimization of a four-coil array arrangement for brain therapy by MR-guided transcranial focused ultrasounds
A particularly critical issue for brain therapy with transcranial high-power focused ultrasound (HIFU) is to optimize the accuracy and rapidity of the temperature follow-up during the heating. MRI is a well-suited candidate for temperature monitoring since it offers several parameters such as the proton resonance frequency shift. Up-to-now, temperature scans were achieved using the standard bod...
متن کاملMR guided High Intensity Focused Ultrasound for tumor ablation in brain: preliminary results
Introduction Brain therapy with transcranial focused ultrasound is a scientific and technological challenge [1,2]. A novel prototype is presented here (SuperSonic Imagine, France), working at the highest frequency envisioned currently for transcranial brain treatment (1MHz). A non invasive time-reversal focusing technique based on CT scans is performed for that purpose [3]. Such a brain therapy...
متن کامل